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Poincaré-type inequalities are a key tool in the analysis of partial differential equations. They play a par-
ticularly central role in the analysis of domain decomposition and multilevel iterative methods for second-
order elliptic problems. When the diffusion coefficient varies within a subdomain or within a coarse grid
element, then condition number bounds for these methods based on standard Poincaré inequalities may
be overly pessimistic. In this paper, we present new results on weighted Poincaré-type inequalities for
very general classes of coefficients that lead to sharper bounds independent of any possible large variation
in the coefficients. The main requirement on the coefficients is some form of quasi-monotonicity that we
will carefully describe and analyse. The Poincaré constants depend on the topology and the geometry of
regions of relatively high and/or low coefficient values, and we shall study these dependencies in detail.
Applications of the inequalities in the analysis of domain decomposition and multigrid methods can be
found in Pechstein & Scheichl (2011, Numer. Math., 118) and Scheichl et al. (2012, SIAM J. Numer.
Anal., 50).

Keywords: Poincare/Friedrichs inequalities; discrete Sobolev inequalities; quasi-monotone heteroge-
neous coefficients; coefficient robustness; geometric dependencies.

1. Introduction

Poincaré-type inequalities are a key tool in the analysis of partial differential equations (PDEs). They are
at the heart of uniqueness results, of a priori and a posteriori error analyses of discretization schemes,
and of convergence analyses of iterative solution strategies, in particular, in the analysis of domain
decomposition (DD) and multigrid (MG) methods for finite element (FE) discretizations of elliptic
PDEs of the type

− ∇ · (α∇u) = f . (1.1)

In many applications, such as porous media flow or electrostatics, the coefficient function α = α(x)
in (1.1) is discontinuous and varies over several orders of magnitude throughout the domain in a possibly
very complicated way. Standard analyses of multilevel iterative methods for (1.1) that use classical
Poincaré-type inequalities will often lead to pessimistic bounds in this case. If the subdomain partition
in a DD method or the coarsest grid in an MG method can be chosen such that α(x) is constant (or almost
constant) on each subdomain or on each coarse grid element, then it is possible to prove bounds that
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WEIGHTED POINCARÉ INEQUALITIES 653

are independent of the coefficient variation (cf. Dryja et al., 1996; Klawonn & Widlund, 2001; Toselli
& Widlund, 2005; Xu & Zhu, 2008). However, if this is not possible and the coefficient varies strongly
within a subdomain or within a coarse grid element, then the classical bounds depend on the local
variation of the coefficient, which may be overly pessimistic in many cases. To obtain sharper bounds
in some of these cases, it is possible to refine the standard analyses and use Poincaré inequalities on
annulus-type boundary layers of each subdomain (Graham et al., 2007; Scheichl & Vainikko, 2007;
Pechstein & Scheichl, 2008, 2009) or weighted Poincaré-type inequalities (Galvis & Efendiev, 2010a;
Pechstein & Scheichl, 2011; Scheichl et al., 2012); see also Sarkis (1997), Oswald (1999), Griebel et
al. (2007), Dohrmann et al. (2008), Klawonn et al. (2008), Zhu (2008), Efendiev & Galvis (2010) and
Galvis & Efendiev (2010b) for related work.

Let D be a bounded Lipschitz domain in R
d . Throughout the paper, we consider coefficients or

weight functions α with

α ∈ L∞
+ (D) :=

{
α ∈ L∞(D) : inf

x∈D
α(x) > 0

}
. (1.2)

Such a weight function induces the weighted norm and seminorm

‖u‖L2(D),α :=
(∫

D
α(x)|u(x)|2 dx

)1/2

,

|u|H1(D),α :=
(∫

D
α(x)|∇u(x)|2 dx

)1/2

.

(1.3)

Let CP,α(D) be the smallest constant such that the weighted Poincaré-type inequality

inf
c∈R

‖u − c‖2
L2(D),α � CP,α(D) diam(D)2|u|2H1(D),α ∀u ∈ H1(D) (1.4)

holds. We are interested in finding bounds for CP,α(D) that are in a certain sense robust with respect to
strong variations in α. To explain the kind of robustness we strive for, we give a preview of some of our
results. If α is piecewise constant with respect to a partition of D, we will be able to show that under a
suitable monotonicity condition on α, there exists a bound for CP,α(D) that is independent of the values
of α. Furthermore, we can make explicit the dependence on the geometry of the partition. Bounds for
coefficients α that are not piecewise constant can easily be deduced from these results. However, they
depend on some local variations of α.

Clearly, CP,α(D) depends on the shape of the domain D. However, one easily shows by dilation that
CP,α(D) is independent of diam(D). The infimum in (1.4) is attained when choosing the constant

c = ūD,α :=
∫

D αu dx∫
D α dx

, (1.5)

which is the α-weighted average of u over D (cf., for example, Chua & Wheeden, 2006; Galvis &
Efendiev, 2010a, Lemma 4). This is easily seen from a variational argument. The functional on the
left-hand side of (1.4) is convex with respect to c, and hence the infimum is attained if and only if

0 = d

dc

∫
D

α|u − c|2 dx = −2
∫

D
α(u − c) dx.
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654 C. PECHSTEIN AND R. SCHEICHL

If diam(D) = 1, the best constant CP,α(D) is the inverse of the second smallest eigenvalue of the gener-
alized eigenvalue problem

−∇ · (α∇u) = λαu in D, (1.6)

α∇u · n = 0 on ∂D; (1.7)

see, for example, Galvis & Efendiev (2010b). For general weight functions α, we can obtain a bound
for CP,α(D) in (1.4) from the usual Poincaré inequality. Let ūD := ūD,1 be the usual average (cf. (1.5)).
Then, it is easily shown that

‖u − ūD‖2
L2(D),α � sup

x,y∈D

α(x)

α(y)
CP(D) diam(D)2|u|2H1(D),α ,

where CP(D) = CP,1(D) is the usual Poincaré constant on D. Thus, this bound for CP,α(D) depends on
the global variation supx,y∈D(α(x)/α(y)), and if α is highly variable this may be very large and very
pessimistic.

We note that although weighted Poincaré inequalities have been investigated a lot in the literature,
estimates of the Poincaré constant CP,α that show certain robustness in α are hardly known. Chua (1993)
showed that the weighted Poincaré inequality holds for domains satisfying the Boman chain condition
with weights α from a Muckenhoupt class (see Muckenhoupt, 1972). Chua’s paper is based on the early
work by Iwaniec & Nolder (1985); see also Fabes et al. (1982) and Maz’ja (1985) for related work.
The constant in the Poincaré inequality depends in general on the weight. A similar result was obtained
by Zhikov & Pastukhova (2008, Lemma 2.6) for weights α ∈ Lr with α−1 ∈ Ls with 2d−1 = r−1 + s−1.
Also there, the Poincaré constant depends on α. Chua & Wheeden (2006) provide explicit estimates for
the Poincaré constant for the class of convex domains Ω with weights α that are a positive power of
a non-negative concave function. Note that concavity implies continuity. Recently, Veeser & Verfürth
(2012) refined these results to star-shaped domains, where the weight function satisfies a concavity
property with respect to the central point of the star (see Veeser & Verfürth, 2012, Condition (2.3) for
more details, and see Veeser & Verfürth, 2009 on how to use these inequalities in (explicit) a posteriori
error estimation). We also note that Chua (1993), Chua & Wheeden (2006) and Veeser & Verfürth
(2012) cover the general case of Lp, not just L2. To the best of our knowledge, the first paper that deals
with robust estimates of the weighted Poincaré constant for discontinuous weight functions is Galvis &
Efendiev (2010a). There, Galvis and Efendiev show that, for piecewise constant coefficients α, if the
largest value is attained in a connected region Ω1 and if all the other regions of constant α are inclusions
of (or at least bordering) Ω1, then CP,α is independent of the values of α, in particular of possibly high
contrast.

In the present paper, we want to expand on the results in Galvis & Efendiev (2010a) and Pechstein &
Scheichl (2011) and present sharp constants for weighted Poincaré-type inequalities that are independent
of the range of values of the weight function for a rather general class of coefficients. See also Pechstein
& Scheichl (2010) for an advertisement of some preliminary results. In Section 2.1, we will define a class
of quasi-monotone piecewise constant weight functions (far more general than in Galvis & Efendiev,
2010a) for which we can make CP,α(D) totally independent of the (piecewise constant) values of α. To
get bounds for CP,α(D) in (1.4), we will choose averages over certain manifolds rather than over D. In
Section 2.2, we will achieve similar results for an even more general class of coefficients that are not
piecewise constant. In many applications, especially in the analysis of MG and DD methods, Poincaré-
type inequalities are not needed on all of H1(D) but only for the subset of FE functions. This restriction
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WEIGHTED POINCARÉ INEQUALITIES 655

allows for a larger class of coefficients α, where we can show discrete analogues of inequality (1.4). This
issue will be treated in Section 3. Even if the Poincaré constant CP,α(D) can be bounded independent
of the range of α, it will in general depend on the topology and geometry of the regions where the
coefficient α is ‘large’ and where it is ‘small’. To make this more precise, in Section 4, we restrict our
attention again to piecewise constant weights and work out what this geometric dependence looks like.
Since this issue can be rather complicated in two and three space dimensions, we present a series of
general technical tools and analyse a few examples in detail.

Extensions to PDEs/inequalities, where α is replaced by an isotropic tensor, are straightforward
whereas the case of anisotropic tensors is substantially harder.

Applications of these novel, weighted Poincaré-type inequalities in the analysis of geometric MG, as
well as of two-level overlapping Schwarz and FETI DD methods can be found in Pechstein & Scheichl
(2011) and Scheichl et al. (2012).

2. Weighted Poincaré-type inequalities in H1

Let us start by considering inequalities for piecewise constant weight functions (Section 2.1). We will
return to more general weight functions in Section 2.2.

2.1 Quasi-monotone piecewise constant weight functions

Let the weight function α ∈ L∞
+ (D) be piecewise constant with respect to a nonoverlapping partitioning

of D into open, connected Lipschitz polytopes Y := {Y� : � = 1, . . . , n}, that is,

D̄ =
n⋃

�=1

Ȳ� and α|Y�
≡ α� (2.1)

for some constants α�. We shall drop this condition in Section 2.2.
To simplify the presentation, we set H := diam(D) and define, for any u ∈ H1(D) and for any (d −

1)-dimensional manifold X ⊂ D̄, the average

ūX :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

measd−1(X )

∫
X

u ds if d > 1,

1

measd−1(X )

∑
x∈X

u(x) if d = 1,

where meas0(X ) :=
∑
x∈X

1.

Definition 2.1 Suppose that α ∈ L∞
+ (D) satisfies (2.1) and let the index �∗ ∈ {1, . . . , n} be such that

α�∗ = max�=1,...,n α�.

(a) We call the region P�1,�s := (Ȳ�1 ∪ Ȳ�2 ∪ · · · ∪ Ȳ�s)
◦, 1 � �1, . . . , �s � n, a quasi-monotone path

from Y�1 to Y�s (with respect to α) if the following two conditions are satisfied:

(i) for each i = 1, . . . , s − 1, the regions Ȳ�i and Ȳ�i+1 share a common (d − 1)-dimensional
manifold Xi;

(ii) α�1 � α�2 � · · · � α�s .

We refer to s as the length of P�1,�s .
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Fig. 1. The numbering of the regions Y� in these examples is according to the relative sizes of the weights α� on each region, with
the smallest weight in region Y1. Examples (a,b,c) are quasi-monotone in the sense of Definition 2.1. In each case, a typical path
and a suitable manifold X ∗ are displayed. Example (d) is not quasi-monotone.

(b) We say that α is quasi-monotone on D if, for any k = 1, . . . , n, there exists a quasi-monotone
path Pk,�∗ from Yk to Y�∗ . Let sk denote the length of Pk,�∗ .

(c) Let X ∗ ⊂ Ȳ�∗ be a (d − 1)-dimensional manifold. For each k = 1, . . . , n, let cX ∗
k > 0 be the best

constant such that

‖u − ūX ∗‖2
L2(Yk)

� cX ∗
k H2|u|2H1(Pk,�∗ ) ∀u ∈ H1(Pk,�∗), (2.2)

and set C∗
P,α :=∑n

k=1 cX ∗
k .

Without loss of generality, we can assume that the index �∗ of the subregion with the largest value is
unique. If �∗ is not unique, then α is either not quasi-monotone, or all the regions where the maximum
of α is attained must be connected and can therefore be subsumed into one region Y�∗ .

Note that the constant C∗
P,α in Definition 2.1(c) depends on the choice of manifold X ∗ ⊂ Ȳ�∗ and of

the paths {Pk,�∗ }n
k=1. The above definition is a generalization of the notion of quasi-monotone coefficients

introduced in Dryja et al. (1996) in the context of DD solvers (see Bernardi & Verfürth, 2000 for an
application in a posteriori error analysis). In Fig. 1(a,b,c), we give some examples of weight functions
that satisfy Definition 2.1. The coefficient shown in Fig. 1(d) fails to be quasi-monotone.

The following theorem shows that, for quasi-monotone weight functions α, the constant C∗
P,α from

Definition 2.1(c), which is clearly independent of the values that α takes on D, provides a bound on the
best constant CP,α(D) in (1.4).

Theorem 2.2 (Weighted Poincaré inequality—piecewise constant case.) Let α ∈ L∞
+ (D) be quasi-

monotone on D in the sense of Definition 2.1. Then

inf
c∈R

‖u − c‖2
L2(D),α � C∗

P,αH2|u|2H1(D),α ∀u ∈ H1(D), (2.3)

where C∗
P,α is the constant defined in Definition 2.1(c), that is, CP,α(D) � C∗

P,α .

Proof. For simplicity, we assume that H = diam(D) = 1. The general case follows from a dilation
argument. We set c = ūX ∗

(where X ∗ is the manifold chosen in Definition 2.1) and assume without loss
of generality that ūX ∗ = 0. Otherwise, we can set û := u − ūX ∗

and use the fact that |û|H1(D),α = |u|H1(D),α .
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WEIGHTED POINCARÉ INEQUALITIES 657

Let k ∈ {1, . . . , n} be fixed. Then, due to the assumption (2.1) on the weight function α, we have

‖u‖2
L2(Yk),α = αk‖u‖2

L2(Yk)
.

Combining this identity with inequality (2.2) and using the fact that the value of α is monotonically
increasing in the path from Yk to Y�∗ , we obtain

‖u‖2
L2(Yk),α � cX ∗

k αk|u|2H1(Pk,�∗ ) � cX ∗
k |u|2H1(Pk,�∗ ),α � cX ∗

k |u|2H1(D),α .

The proof is completed by adding up the above estimates for k = 1, . . . , n. �

As we can see from the proof of Theorem 2.2, inequality (2.3) does not only hold for the infimum,
that is, for the weighted average c = ūD,α , but also for c = ūX ∗

where X ∗ may be any (d − 1)-dimensional
manifold in Y�∗ . This is of importance in certain applications.

Although the definition of the constant C∗
P,α in Definition 2.1(c) suggests that it grows with the

number n of subregions, this is not the case in general. The reason is that on the left-hand side in (2.2),
the L2 norm is taken only over Yk and not over the whole path Pk,�∗ . We will discuss this issue extensively
in Section 4. However, we would like to give already at this stage a general tool, Lemma 2.4, on how the
inequalities (2.2) are related to more common Poincaré inequalities on each of the individual subregions
Yk . We note that a similar decomposition procedure can already be found in Veeser & Verfürth (2012,
Section 2.3).

Definition 2.3 For any bounded Lipschitz domain Y ⊂ R
d and for any (d − 1)-dimensional manifold

X ⊂ Ȳ , let CP(Y ; X ) > 0 denote the best constant such that the following Poincaré-type inequality holds:

‖u − ūX ‖2
L2(Y ) � CP(Y ; X ) diam(Y)2|u|2H1(Y ) ∀u ∈ H1(Y). (2.4)

Lemma 2.4 Suppose α ∈ L∞
+ (D) is quasi-monotone and Pk,�∗ is any of the paths in Definition 2.1(b) with

�1 = k and �s = �∗. For convenience let X0 := X1 and Xs := X ∗. Then the constant cX ∗
k in Definition 2.1(c)

can be bounded by

cX ∗
k � 4

s∑
i=1

meas(Yk)

meas(Y�i)

diam(Y�i)
2

H2
max{CP(Y�i ; Xi−1), CP(Y�i ; Xi)}.

Proof. By a telescoping argument we have

‖u − ūX ∗‖L2(Yk) � ‖u − ūX1‖L2(Yk) +
s∑

i=2

√
meas(Yk)|ūXi−1 − ūXi |. (2.5)

Estimate (2.4) yields a bound for the first term on the right-hand side, that is,

‖u − ūX1‖2
L2(Yk)

� CP(Yk; X1) diam(Yk)
2|u|2H1(Yk)

. (2.6)
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658 C. PECHSTEIN AND R. SCHEICHL

For i fixed, we can also conclude from inequality (2.4) that

|ūXi−1 − ūXi |2 � 2

meas(Y�i)

(
‖ūXi−1 − u‖2

L2(Y�i )
+ ‖u − ūXi‖2

L2(Y�i )

)

� 4 max{CP(Y�i ; Xi−1), CP(Y�i ; Xi)}diam(Y�i)
2

meas(Y�i)
|u|2H1(Y�i )

(2.7)

(this is essentially a Bramble–Hilbert-type argument). An application of Cauchy’s inequality (in R
s)

yields the final result. �

Note that in one dimension, due to Lemma 2.4, the Poincaré constant C∗
P,α is O(1) as n → ∞, as

the following corollary shows. The situation in higher dimensions is more complicated and is left until
Section 4.

Corollary 2.5 Let d = 1. If α is piecewise constant with respect to {Y�}n
�=1 and quasi-monotone in

the sense of Definition 2.1, then C∗
P,α =O(1) as n → ∞.

Proof. We assume without loss of generality, that D = (0, 1) and X ∗ = 1. (Note that in this case quasi-
monotonicity in the sense of Definition 2.1 is equivalent to the usual monotonicity.) Let us assume
that the regions Y� are numbered consecutively from left to right, and that X� := Ȳ� ∩ Ȳ�+1 for � =
1, . . . , n − 1, with Xn := X ∗. It follows from the Fundamental Theorem of Calculus that

‖u − u(X�−1)‖2
L2(Y�)

� diam(Y�)
2|u|2H1(Y�)

∀u ∈ H1(Y�), ∀� = 1, . . . , n. (2.8)

Hence, CP(Y�; X�−1) � 1. The same is true if we replace X�−1 by X�. Since, for d = 1, we have
meas(Y�) = diam(Y�), it follows from Lemma 2.4 that

cX ∗
k � 4 diam(Yk)

n∑
�=k

diam(Y�) � 4 diam(Yk) ∀k = 1, . . . , n,

and so C∗
P,α � 4 =O(1) as n → ∞. �

Note that it was crucial to define cX ∗
k as done in Definition 2.1. Using a standard Poincaré-type

inequality for Pk,�∗ , such as

‖u − ūX ∗‖2
L2(Pk,�∗ ) � CP(Pk,�∗ ; X ∗) diam(Pk,�∗)2|u|2H1(Pk,�∗ ),

would lead to a very pessimistic bound for the Poincaré constant in (2.3):

C∗
P,α �

n∑
k=1

CP(Pk,�∗ ; X ∗)
diam(Pk,�∗)2

H2
.

In our one-dimensional example in Corollary 2.5 this would in general lead to C∗
P,α =O(n).

An inequality similar to that in Theorem 2.2 holds if u vanishes on part of the boundary of D. This
is sometimes referred to as a Friedrichs inequality.

Definition 2.6 Suppose α ∈ L∞
+ (D) satisfies (2.1) and Γ ⊂ ∂D.
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Y1 Yn
Y1 Yn Y1 Yn Y1 Yn Y1 Yn

(a)

X*

(b) (c) (d) (e)

X* X* X*X0 Xn

Fig. 2. Examples of quasi-monotone weight functions in one dimension. Cases (a,b) are quasi-monotone in the sense of
Definition 2.1. Case (c) is Γ -quasi-monotone in the sense of Definition 2.6 with Γ = {X0, Xn}, cases (d,e) are quasi-monotone in
the sense of Definition 2.8 (see Section 2.2).

(a) We say that α is Γ -quasi-monotone on D if, ∀ k = 1, . . . , n, there exist an index �∗
k and a

quasi-monotone path Pk,�∗
k

(with respect to α) from Yk to Y�∗
k
, such that ∂Y�∗

k
∩ Γ is a (d − 1)-

dimensional manifold.

(b) For each k = 1, . . . , n, let cΓ
k > 0 be the best constant such that

‖u‖2
L2(Yk)

� cΓ
k H2|u|2H1(Pk,�∗k ) ∀u ∈ H1(Pk,�∗

k
), u|Γ = 0, (2.9)

and set CΓ
F,α :=∑n

k=1 cΓ
k .

Again the constant CΓ
F,α in Definition 2.6(b) is clearly independent of the actual values that α takes

on D. A one-dimensional example of a Γ -quasi-monotone function is given in Fig. 2(c). Note that this
function is not quasi-monotone in the sense of Definition 2.1, while the example in Fig. 2(b) is not
Γ -quasi-monotone in the sense of Definition 2.6 for any choice of Γ ⊂ ∂D.

Theorem 2.7 (Weighted Friedrichs inequality—piecewise constant case.) Let Γ ⊂ ∂D and suppose
that α ∈ L∞

+ (D) is Γ -quasi-monotone on D in the sense of Definition 2.6. Then

‖u‖2
L2(D),α � CΓ

F,αH2|u|2H1(D),α ∀u ∈ H1(D) with u|Γ = 0,

where CΓ
F,α is the constant defined in Definition 2.6(b).

Proof. The proof is analogous to that of Theorem 2.2. �

For the remainder of this paper we will restrict our attention to weighted Poincaré-type inequalities
(cf. Theorem 2.2), but we remark that there are always analogous statements for weighted Friedrichs-
type inequalities (cf. Theorem 2.7) that we will not mention or prove explicitly.

2.2 General weight functions

In this subsection, we digress briefly to discuss more general nonconstant weight functions. To do this,
we generalize our definition of quasi-monotonicity. Our bounds are then not completely independent of
the values of α, but they will only depend on the local variation. Finally, we will show that our bounds
are in a certain sense sharp.
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660 C. PECHSTEIN AND R. SCHEICHL

Definition 2.8 Let Y := {Y�}n
�=1 be a nonoverlapping partition of D. A weight function α ∈ L∞

+ (D) is
called (macroscopically) quasi-monotone with respect to Y if the auxiliary, piecewise constant weight
function α ∈ L∞

+ (D) defined by

α(x) := inf
y∈Y�

α(y) ∀x ∈ Y�,

is quasi-monotone on D in the sense of Definition 2.1. (For a typical example see Fig. 2(e).)

Clearly, Definition 2.8 is a generalization of Definition 2.1. Any α ∈ L∞
+ (D) that satisfies (2.1) and is

quasi-monotone in the sense of Definition 2.1 is also macroscopically quasi-monotone with respect to Y
in the sense of Definition 2.8 with α ≡ α. Moreover, any weight function α ∈ L∞

+ (D) is macroscopically
quasi-monotone in the sense of Definition 2.8 with respect to the trivial partition Y := {D}. However,
a finer partition may lead to a better bound for the Poincaré constant CP,α(D) in the following theorem
(which is a generalization of Theorem 2.2).

Analogously to α let us also define ᾱ ∈ L∞
+ (D) such that

ᾱ(x) := sup
y∈Y�

α(y) ∀x ∈ Y�.

Theorem 2.9 (Weighted Poincaré inequality—general case.) Let Y := {Y�}n
�=1 be a nonoverlapping

partition of D and let α ∈ L∞
+ (D) be macroscopically quasi-monotone with respect to Y in the sense of

Definition 2.8. Then

inf
c∈R

‖u − c‖2
L2(D),α � C∗

P,α

∥∥∥∥ ᾱ

α

∥∥∥∥
L∞(D)

H2|u|2H1(D),α ∀u ∈ H1(D),

where C∗
P,α is the constant in Definition 2.1(c) for the auxiliary function α.

Proof. We proceed as in the proof of Theorem 2.2 and assume without loss of generality that ūX ∗ = 0
and diam(D) = 1. Then, again using Theorem 2.2, inequality (2.2) and the quasi-monotonicity of α, we
have

‖u‖2
L2(Yk),α � sup

x∈Yk

α(x)‖u‖2
L2(Yk)

� sup
x∈Yk

α(x)cX ∗
k |u|2H1(Pk,�∗ ) �

supx∈Yk
α(x)

infy∈Yk α(y)
cX ∗

k |u|2H1(Pk,�∗ ),α .

Obviously, |u|H1(Pk,�∗ ),α � |u|H1(Pk,�∗ ),α , which completes the proof. �

Theorem 2.9 implies the bound CP,α(D) � C∗
P,α‖ᾱ/α‖L∞(D) for the weighted Poincaré constant

in (1.4). This bound is independent of the values of α but it depends on the local variation of α on
each of the subregions Yk ∈Y . However, since we are free to choose the partition Y , it is in princi-
ple possible to obtain a Poincaré constant that is completely independent of the variation of α (even
for exponentially growing coefficients) by letting n → ∞—provided α remains macroscopically quasi-
monotone with respect to Y as we let n → ∞. We would like to illustrate this in one dimension. The
following corollary follows immediately from Theorem 2.9 and the proof of Corollary 2.5.
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Corollary 2.10 Let D = [0, 1] and X ∗ ∈ [0, 1]. If α is monotonically nondecreasing on (0, X ∗) and
monotonically nonincreasing on (X ∗, 1), then

inf
c∈R

‖u − c‖2
L2(D),α � 4|u|2H1(D),α ∀u ∈ H1(D).

Theorem 2.9 also shows that we still get good bounds for CP,α(D), even if we do not have strict
quasi-monotonicity (in the sense of Definition 2.1). An example of this is the case in Fig. 1(d) with
α1 = 1, α2 = 10 and α3 � 10. Applying Theorem 2.9 with the partition Y := {Y1 ∪ Y2, Y3} (instead of
Theorem 2.2), the maximum local variation is ‖ᾱ/α‖L∞(D) = 10 and so it follows from Theorem 2.9 that
CP,α(D) =O(1) as α3 → ∞.

However, the bound in Theorem 2.9 deteriorates when quasi-monotonicity is strongly violated. For
the example in Fig. 1(d) it can be shown that

CP,α(D) � c min

{
α2

α1
,
α3

α1

}

(cf. Pechstein & Scheichl, 2011, Section 3.3). Lemma 3.7 in Section 3.1 shows that quasi-monotonicity
is in fact a necessary condition for CP,α(D) to remain bounded when the contrast in the coefficient goes
to infinity.

3. Weighted Poincaré inequalities for FE functions

In many applications, for example, in the analysis of multilevel iterative methods for (1.1), it is sufficient
to have Poincaré-type inequalities for FE functions. We will show now that it is possible to extend the
class of weight functions α for which we can obtain weighted Poincaré inequalities to include piecewise
constant functions α that clearly fall outside the original definition of quasi-monotonicity in Dryja et al.
(1996) and that of the previous section.

Hence, for this section let D be a Lipschitz polytope domain in R
d (d � 2). For a suitable index set

Θ , let {Th(D)}h∈Θ be a family of shape-regular simplicial triangulations, that is, there exists a uniform
constant creg > 0 such that, ∀ h ∈ Θ and ∀ τ ∈ Th(D),

diam(τ )

ρ(τ)
� creg, (3.1)

where ρ(τ) is the diameter of the largest inscribed ball (cf. Ciarlet, 2002). For each h ∈ Θ , we define
the usual space of continuous, piecewise linear FEs

Vh(D) := {v ∈ C(D̄) : v|τ affine linear ∀τ ∈ Th(D)}.

Let α ∈ L∞
+ (D) be piecewise constant again with respect to a nonoverlapping partitioning of D into

open, connected Lipschitz polytopes Y := {Y� : � = 1, . . . , n} such that

D̄ =
n⋃

�=1

Ȳ� and α|Y�
≡ α� (3.2)

for some constants α�. In addition, we assume here that α is piecewise constant with respect to Th(D),
so that Th(D) is aligned with Y .
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662 C. PECHSTEIN AND R. SCHEICHL

The following lemma is the crucial tool to extend our results to more general coefficients in the
case of FE functions. It requires in addition that, restricted to a subregion Y�, the family {Th(D)}h∈Θ is
quasi-uniform, that is, there exists a uniform constant cquasi > 0 such that, ∀ h ∈ Θ and ∀ τ , τ ′ ∈ Th(Y�),

diam(τ )

diam(τ ′)
� cquasi. (3.3)

Furthermore, we need to define the indicator function

σ j(x) :=

⎧⎪⎨
⎪⎩

1 if j = 1,

1 + log(x) if j = 2,

xj−2 if j � 3.

(3.4)

Lemma 3.1 Let Y be a nondegenerate d-dimensional simplex or a d-dimensional hypercube and let
{Th(Y)}h∈Θ be a quasi-uniform family of simplicial triangulations. Suppose that X ∈ ∂Y is an m-
dimensional facet (vertex, edge, face, etc.) with 0 � m � d − 1. Then there exists a constant cdiscr inde-
pendent of h, H = diam(Y), and X such that, ∀h ∈ Θ and ∀ u ∈ Vh(Y),

‖u − ūX ‖2
L2(Y ) � cdiscrσ

d−m

(
H

h

)
H2|u|2H1(Y ).

The constant cdiscr depends on d, m, the ratio diam(Y)/ρ(Y) and on the constants creg and cquasi in (3.1)
and (3.3).

Proof. Proofs for d � 3 can be found in Toselli & Widlund (2005, Section 4.6); see also Bramble & Xu
(1991). A proof for arbitrary dimension is given in Appendix A. �

Note that, clearly, the dependence of the Poincaré constant on H/h gets weaker as the dimension m
of the manifold over which we ‘average’ the function increases. It is linear if m = d − 3 (for example,
d = 3 and X is a vertex), logarithmic if m = d − 2 (for example, d = 2 and X is a vertex or d = 3 and X
is an edge) and it does not depend on H/h at all if m = d − 1.

Definition 3.2 Suppose that α ∈ L∞
+ (D) satisfies (3.2) and that �∗ ∈ {1, . . . , n} is such that α�∗ =

max�=1,...,n α�. Furthermore, let m be an integer between 0 and d − 1.

(a) We call the region P�1,�s := (Ȳ�1 ∪ Ȳ�2 ∪ · · · ∪ Ȳ�s)
◦, 1 � �1, . . . , �s � n, a type-m quasi-monotone

path from Y�1 to Y�s (with respect to α) if the following two conditions hold:

(i) for each i = 1, . . . , s − 1, the regions Ȳ�i and Ȳ�i+1 share a common m-dimensional mani-
fold Xi;

(ii) α�1 � α�2 � · · · � α�s .

(b) We say that α is type-m quasi-monotone on D if, ∀ k = 1, . . . , n, there exists a quasi-monotone
path Pk,�∗ from Yk to Y�∗ . Again, sk denotes the length of Pk,�∗ .
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1

2
3

4 14

2 3 1

2

3

(a) (b) (c)

Fig. 3. Examples of type-m quasi-monotone weight functions for d = 3 with m �2 in (a), with m �1 in (b) and with m = 0 in (c).

(c) Let X ∗ ⊂ Ȳ�∗ be an m-dimensional manifold and for each k = 1, . . . , n let cX ∗
k > 0 be the best

constant such that, ∀ h ∈ Θ ,

‖u − ūX ∗‖2
L2(Yk)

� cX ∗
k σ d−m

(
H

h

)
H2|u|2H1(Pk,�∗ ) ∀u ∈ Vh(Pk,�∗). (3.5)

As before, we set C∗
P,α :=∑n

k=1 cX ∗
k .

Clearly, a type-m quasi-monotone coefficient α is also type-(m − 1) quasi-monotone. In Fig. 3, we
see some examples. The examples in Fig. 3(b,c) are clearly not quasi-monotone in the classical sense
(cf. Dryja et al., 1996), yet a discrete version of the weighted Poincaré inequality in Theorem 2.2 can
be established even for these coefficients, with a constant that does not depend on α.

Remark 3.3 (a) If the index �∗ is not unique, then α is either not type-m quasi-monotone, or there
exists a type-m quasi-monotone path connecting all the regions where the maximum of α is attained.
The union of these regions is then called type-m connected.

(b) Note that without any additional work, the following theory can in fact be extended to regions
Y1, . . . , Yn that are only type-m connected rather than connected. To simplify the presentation,
we chose not to do so.

Theorem 3.4 (Discrete weighted Poincaré inequality) Let 0 � m � d − 1 and let {Th(D)}h∈Θ be quasi-
uniform. If α ∈ L∞

+ (D) is type-m quasi-monotone on D in the sense of Definition 3.2, then

inf
c∈R

‖u − c‖2
L2(D),α � C∗

P,ασ d−m

(
H

h

)
H2|u|2H1(D),α ∀u ∈ Vh(D), (3.6)

where C∗
P,α is as in Definition 3.2(c) and σ d−m(H/h) is defined in (3.4).

Proof. The proof is identical to the proof of Theorem 2.2 using (3.5) instead of (2.2). �

Let us finish this section by analysing again how the inequality (3.5) is related to inequalities on the
individual subregions Yk .

Definition 3.5 For any bounded Lipschitz domain Y ⊂ D resolved by Th(D), and for any
m-dimensional manifold X ⊂ Ȳ , let CP(Y ; X ) > 0 denote the best constant such that, ∀ h ∈ Θ
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664 C. PECHSTEIN AND R. SCHEICHL

and ∀ u ∈ Vh(Y),

‖u − ūX ‖2
L2(Y ) � CP(Y ; X )σ d−m

(
diam(Y)

h

)
diam(Y)2|u|2H1(Y ). (3.7)

The existence of such a constant CP(Y ; X ) is guaranteed, for example, in the case of a simplex or
hypercube if X is one of the facets of Y (cf. Lemma 3.1).

Lemma 3.6 Suppose α ∈ L∞
+ (D) is type-m quasi-monotone and Pk,�∗ is any of the paths in

Definition 3.2(b) with �1 = k and �s = �∗. For convenience let X0 := X1 and Xs := X ∗. Then the con-
stant cX ∗

k in Definition 3.2(c) can be bounded by

cX ∗
k � 4

s∑
i=1

meas(Yk)

meas(Y�i)

diam(Y�i)
2

H2
max{CP(Y�i ; Xi−1), CP(Y�i ; Xi)}.

Proof. The proof follows as for Lemma 2.4 using in addition that σ j(x) is a monotonically nondecreas-
ing function. �

Clearly, the constants CP(Y�i ; Xi) in Lemma 3.6 (and thus C∗
P,α in Theorem 3.4) are independent

of {αk}n
k=1. However, to bound them independently of Y (i.e., geometric parameters), it is necessary

to require a certain regularity of the subregions Yk . This is technical and will be discussed in detail in
Section 4.

3.1 Necessity of the quasi-monotonicity condition

The following result shows that type-0 quasi-monotonicity, in the sense of Definition 3.2, is in fact a
necessary condition for CP,α(D) to remain bounded when the contrast in the coefficient goes to infinity.

Proposition 3.7 Suppose that α ∈ L∞
+ (D) satisfies (2.1) and the subregions {Y�}n

�=1 are ordered such
that αn � αn−1 � · · · � α1. If α is not type-0 quasi-monotone in the sense of Definition 3.2, then there
exist indices k, j with n > k > j � 1 and a constant C > 0 independent of {α�}n

�=1 such that

αk > αj and CP,α(D) � C
αk

αj
,

that is, CP,α(D) → ∞ as αk/αj → ∞. The same is true for the (best) constant in the discrete weighted
Poincaré inequality (3.6).

Proof. Clearly,

CP,α(D) � sup
u∈H1(D)

infc∈R ‖u − c‖2
L2(D),α

|u|2H1(D),α

. (3.8)

If α is not type-0 quasi-monotone (in the sense of Definition 3.2), then there exists an index k, with
n > k > 1, such that there is no type-0 quasi-monotone path from Yk to Y�∗ = Yn. Let us assume that k
is the largest index having this property, and let j ∈ {1, . . . , k − 1} be the largest index such that αk > αj.
Then it follows that the regions

YM := (Ȳj+1 ∪ · · · ∪ Ȳk)
◦ and YH := (Ȳk+1 ∪ · · · ∪ Ȳn)

◦

are separated by YL := (Ȳ1 ∪ · · · ∪ Ȳj)
◦ or in other words, ȲM and ȲH are disconnected. (If they were not,
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there would be a type-0 quasi-monotone path from Yk to Yn).
Now choose u∗ ∈ H1(D) such that

u∗
|YH

= +1, u∗
|YM

= −1 and |u∗|2H1(YL) � β. (3.9)

The existence of such a function follows from the fact that the trace operator of a Lipschitz domain has
a continuous right inverse (see, for example, McLean, 2000, Theorem 3.37), which yields

|u∗|2H1(YL) � ‖u∗‖2
H1(YL) � Ctr‖u∗‖2

H1(∂YL∩(∂YH ∪∂YM )) =: β

if we choose u∗
|YL

as the right inverse of the trace prescribed on ∂YH and ∂YM . Since this trace is constant,
β depends only on the region YL. Note that if either of the regions YH and YM is not connected (but only
type-0 connected; see Remark 3.3), then YL may fail to be a Lipschitz domain. However, in this case,
the regions YH and YM (where u∗ = ±1) can be extended suitably such that they are still disconnected
and such that the remainder is Lipschitz. This way, we still get property (3.9).

Next, we investigate the numerator and denominator in (3.8) for u = u∗. Firstly,

inf
c∈R

‖u∗ − c‖2
L2(D),α � inf

c∈R

{|1 − c|2αk+1 measd(YH) + |1 + c|2αk measd(Yk)}

� inf
c∈R

{|1 − c|2 + |1 + c|2}αkγ = 2γαk , (3.10)

where γ := min(measd(YH), measd(Yk)). Secondly, to estimate the weighted H1 norm of u∗ from above,
note first that the gradient of u∗ vanishes on YM and on YH . And so, using (3.9), we can conclude that

|u∗|2H1(D),α = |u∗|2H1(YL),α � αj|u∗|2H1(YL) � βαj.

Together with (3.8) and (3.10), this implies the result with C = 2γ /β.
To get a lower bound for the discrete weighted Poincaré constant in (3.6), we only need to replace

u ∈ H1(D) in (3.8) by u ∈ V h(D). We can bound the supremum from below by choosing the function
Πhu∗, where u∗ is constructed as above and Πh is a Scott–Zhang interpolant that leaves the value ±1
in YH ∪ YM unchanged. In this way, one can derive the bound |Πhu∗|H1(YL) � β, where β additionally
depends on the shape-regularity constant of T h(D). The rest of the proof is analogous. �

It is in fact possible to extend this proof to show that only quasi-monotonicity in the sense of
Definition 2.1 is necessary for CP,α(D) to remain bounded, but the proof is more technical and we
omit it.

4. Explicit dependence on geometrical parameters

Before going into the technical details, let us suppose that the partition Y = {Y�}n
�=1 consists of a few

well-shaped subregions and that all the interfaces Xi between adjacent subregions in Definitions 2.1
and 3.2 are well shaped and sufficiently large. Then it follows from classical results that the constants
CP(Y�i ; Xi) and CP(Y�i ; Xi−1) in Definitions 2.3 and 3.5 are benign (in particular, they are independent of
Y and h). Owing to Lemma 2.4 this implies that the constants C∗

P,α in the weighted Poincaré inequalities
in Theorems 2.2 and 3.4 are also benign.

If the assumptions above do not hold, then

(i) the number n of subregions may be large,
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666 C. PECHSTEIN AND R. SCHEICHL

(ii) the shapes of the subregions Y� may be complicated, in particular long or thin, and/or

(iii) the interfaces may be small compared with adjacent subregions.

In Section 4.1, we allow the number n to become large, but we restrict ourselves to shape-regular
simplicial partitions Y (such that the situations in (ii) and (iii) are ruled out). We can then give explicit
bounds for C∗

P,α in terms of n and H/ηmin, where

ηmin :=
n

min
�=1

diam(Y�),

which is a measure of the ‘small scale’ that the coefficient introduces. In Section 4.2, we generalize
the results to type-m quasi-monotone coefficients. In principle this fully describes the dependence of
C∗

P,α on α, since the situations in (ii) and (iii) can always be overcome by further subdividing some
regions until the partition Y is shape regular. However, this can lead to pessimistic bounds. Therefore,
in Sections 4.3–4.5, we show enhanced bounds for a few distinguished cases including anisotropic
subregions, subregions with holes, as well as a checkerboard distribution.

For the remainder let us restrict ourselves to the case d � 2 and to piecewise constant weight func-
tions α satisfying (2.1). To simplify the presentation we write a � b if a/b can be bounded uniformly
by a constant C that is independent of any parameters, in particular independent of α, Y , H and h.
Furthermore, we write a � b if a � b and b � a.

4.1 Inequalities for shape-regular partitions

Let Y = {Y�}n
�=1 be a conforming simplicial triangulation of D and define

η� := diam(Y�), η := n
max
�=1

η�, ηmin :=
n

min
�=1

η�, (4.1)

as well as the shape-regularity constant

cYreg := n
max
�=1

diam(Y�)

ρ(Y�)
. (4.2)

Recall that a family {Yη}η∈Ξ of simplicial partitions is called shape regular if there is a uniform

bound for c
Yη

reg. It is called quasi-uniform if it is shape regular and the ratios η/ηmin are uniformly
bounded. With a slight abuse of notation we will call a partition shape regular or quasi-uniform if it
is an element of a family of such partitions.

The next lemma bounds the weighted Poincaré constant explicitly in terms of a few geometric
parameters. Recall that, for any quasi-monotone α ∈ L∞

+ (D) with underlying partitioning {Y�}n
�=1 and

�∗ = argmax{α�}n
�=1, the length of the quasi-monotone path Pk,�∗ from Yk to Y�∗ in Definition 2.1 is

denoted by sk .
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Lemma 4.1 Let Y = {Y�}n
�=1 be a shape-regular simplicial partition of D and let α ∈ L∞

+ (D) be quasi-
monotone with respect to Y (in the sense of Definition 2.1, with X ∗ a facet of the simplex Y�∗ ). Then

C∗
P,α � 2d+1(cYreg)

d−1
n∑

k=1

sk measd(Yk)

H2ηd−2
min

.

Proof. The proof is based on Lemma 2.4 and we adopt the same notation. We fix k ∈ {1, . . . , n} and
choose a quasi-monotone path Pk,�∗ = (Ȳ�1 ∪ · · · ∪ Ȳ�sk

)◦ of length sk . It follows from Lemma A1 in
Appendix A that max{CP(Y�i ; Xi−1), CP(Y�i ; Xi)} � 1. Owing to Lemma A2 in Appendix A,

diam(Y�)
2

measd(Y�)
� 2d−1(cYreg)

d−1η2−d
� .

Thus, Lemma 2.4 implies that

cX ∗
k � 4

sk∑
i=1

2d−1(cYreg)
d−1 measd(Yk)

H2
η2−d

�i
. (4.3)

Since d � 2 the result follows from the definition of C∗
P,α in Definition 2.1. �

The following corollary gives the worst-case scenario.

Corollary 4.2 With the assumptions of Lemma 4.1,

C∗
P,α � (H/ηmin)

2(d−1).

If we assume in addition that sk � H/ηmin ∀ k = 1, . . . , n (which is satisfied, for example, when the sum
of the diameters of the subregions in each path is � H), then

C∗
P,α � (H/ηmin)

d−1.

Proof. Note that
∑n

k=1 measd(Yk) = measd(D) � Hd . Owing to shape regularity, sk � n � (H/ηmin)
d

(at most). Hence, the result follows from Lemma 4.1. �

Obviously, the results above extend straightforwardly to the case of partitions of Y into polytopes,
where each subregion Y� consists of a small number of simplices, such that the resulting simplicial
partition of D is shape-regular and conforming. In the examples below we shall often make use of
this fact.

Example 4.1 Let d = 2 and consider the three domains shown in Fig. 4. Note that in all three cases the
assumptions of Lemma 4.1 are fulfilled, the underlying simplicial partition (only shown for (a)) is shape
regular, meas2(D) � H2 and ηmin � 2−nH . Since maxn

k=1 sk � n � log2(H/ηmin) in each of these cases,
it follows from Lemma 4.1 that

C∗
P,α � 1 + log

(
H

ηmin

)
.

Remark 4.3 Example 4.1 shows that the (standard) Poincaré constant CP(D) of the two-dimensional
dumb-bell domain in Fig. 4(c) is O(1 + log(H/ηmin)). Note that the isoperimetric constant (often used
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(a)

minη

(c)(b)

η

ηmin

min

Fig. 4. Some (more complicated) two-dimensional examples with shape-regular partitions. In each case, a corresponding family
of partitions is defined by continuing the fractal structure and therefore halving ηmin. In case (a), different colours mean different
subregions and the dashed lines indicate how to further subdivide in order to obtain a simplicial partition.

to bound CP(D); cf. Maz’ja, 1960, 1985; Dohrmann et al., 2008) is O(H/ηmin) and thus yields a pes-
simistic bound for CP(D).

Example 4.2 Now let d = 3 and consider the domain in Fig. 5 (left) with Y1 being the small cube in
the top corner and the remaining subregions numbered away from Y1, such that ηk � 2kηmin.

Let us first consider the case that �∗ = 1, that is, the largest coefficient is in the small cube. Let k be
fixed; then sk = k and �i = k + 1 − i. It follows from inequality (4.3) that

cX ∗
k �

sk∑
i=1

η3
k

H2
η−1

k+1−i �
4kη2

min

H2

k∑
i=1

2i � η2
min

H2
8k .

Since n � log2(H/ηmin), we get 8n
� (H/ηmin)

3 and thus

C∗
P,α � η2

min

H2

n∑
k=1

8k � H

ηmin
.

For the analogous configuration in higher dimensions, we get C∗
P,α � (H/ηmin)

d−2.
If, on the other hand, the largest coefficient value is attained in the largest domain, that is, �∗ = n,

then, for fixed k, we have sk = n − k + 1 and �i = k − 1 + i. And so, again using inequality (4.3), we
get (for d = 3)

cX ∗
k �

n−k+1∑
i=1

η3
k

H2
η−1

k−1+i �
η2

min

H2
4k

n−k+1∑
i=1

21−i � η2
min

H2
4k � 4k−n,

where in the last step we used that ηmin � 2−nH . Hence, for any n,

C∗
P,α � 1.

In the same way, we can also show that C∗
P,α � 1 for the domains in Fig. 4(a, b) if the largest coefficient

is attained in the largest subregion.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/33/2/652/653341 by guest on 10 April 2024



WEIGHTED POINCARÉ INEQUALITIES 669

minη

2

4 1

3

34X
ηminH

Fig. 5. Left: example with shape-regular polyhedral partition, consisting of a small cube and nested Fichiera corners. Right:
coefficient distribution with a staggered structure. (The largest coefficient is in region Y4.)

Note that the examples in this section are not artificial. They arise naturally when interfaces between
perfectly well-shaped coefficient regions are small compared with the size of the regions; see, for exam-
ple, Fig. 5 (right). This case can often be treated by artificially subdividing some subregions further in
a suitable way.

Example 4.3 Consider the scenario in Fig. 5 (right). The quasi-monotone path P3,4 from Y3 to Y4

contains the interface X3,4, which has diam(X3,4) = ηmin � H . However, subdividing both Y3 and Y4

further as shown in Fig. 4(a), we get as in Example 4.1

C∗
P,α � 1 + log

(
H

ηmin

)
.

4.2 Inequalities for FE functions on shape-regular partitions

In this subsection, we generalize the explicit results of the previous section to the discrete case and
discuss a few particularities.

It was important in Section 4.1 that the (d − 1)-dimensional manifold X ∗ was chosen to be a
(d − 1)-dimensional facet of the simplex Y�∗ , that is, an edge in two dimensions or a face in three
dimensions. In this section, for type-m quasi-monotone coefficients, we choose X ∗ to be an m-facet of
the simplex Y�∗ .

Definition 4.4 Let Y = {Y�}n
�=1 be a simplicial partition of D. Then each boundary ∂Y� is the union of

simplicial m-dimensional manifolds called m-facets, where m = 0, . . . , d − 1. In particular,

(a) 0-facets: the vertices of the simplex;

(b) 1-facets: the edges of the simplex;

(c) 2-facets: the faces of the simplex if d � 3.

It is straightforward to extend the results from Section 4.1 to type-m quasi-monotone coeffi-
cients, provided the mesh Th(D) resolves the partition Y and is quasi-uniform on each of the sim-
plices Y�. Doing this carefully we even get an enhanced bound compared with Theorem 3.4. Let
h� := maxτ⊂Y�

diam(τ ) be the local mesh size on Y� and recall that sk is the length of the type-m quasi-
monotone path Pk,�∗ defined in Definition 3.2.
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670 C. PECHSTEIN AND R. SCHEICHL

Lemma 4.5 For d > 1, let Y = {Y�}n
�=1 be a shape-regular simplicial partition of D and let Th(D) be

such that its restriction Th(Y�) is quasi-uniform ∀ � = 1, . . . , n. If α ∈ L∞
+ (D) is type-m quasi-monotone

with respect to Y (in the sense of Definition 3.2) and if X ∗ is an m-facet of the simplex Y�∗ , then

inf
c∈R

‖u − c‖2
L2(D),α � C∗,m

P,α H2|u|2H1(D),α ∀u ∈ V h(D), (4.4)

where C∗,m
P,α � σ d−m(maxn

�=1(η�/h�))
∑n

k=1 sk(measd(Yk)/H2ηd−2
min ), where σ d−m is as defined in (3.4).

The hidden constant depends on cYreg and on the constant cdiscr from Lemma 3.1.

Proof. The proof follows the same lines as that of Lemma 4.1. Let c = ūX ∗
. Since cYreg � 1 it follows

from Lemma 3.1 that the constants CP(Y�i ; Xi−1) and CP(Y�i ; Xi) in the discrete Poincaré inequality (3.7)
are bounded by cdiscr =O(1) and the additional factors are O(σ d−m(η�i/h�i)). From this, one can derive
(as in the proof of Lemma 2.4) the local inequality

‖u − ūX ∗‖2
L2(Yk)

�
[

sk∑
i=1

measd(Yk)

ηd−2
�i

σ d−m

(
η�i

h�i

)]
|u|2H1(Pk,�∗ ) ∀u ∈ V h(Pk,�∗), (4.5)

which is an analogue to (4.3) (see also (2.2)). The result then follows as in the proof of Lemma 4.1. �

As in Section 4.1, if we exclude pathological examples with type-m quasi-monotone paths Pk,�∗ that
follow convoluted curves with length � H , Lemma 4.5 yields a worst-case scenario of

C∗,m
P,α �

(
H

ηmin

)d−1

σ d−m

(
n

max
�=1

η�

h�

)
.

To apply Lemma 4.1 it was crucial that each Y� in the partition was a simplex. As mentioned several
times, a polytope Y� that is not simplicial can always be artificially subdivided into a set of simplicial
ones. However, it is often difficult to guarantee that a mesh Th(D) that is aligned with the original
partition is also aligned with the artificial simplicial subpartition, and we would not want to impose
such a condition. The next lemma shows that, for any polytope Y that is the union of a small number
of simplices, it suffices that there exists a quasi-uniform triangulation T̃h(Y) that is aligned with the
simplicial subpartition of Y and has the same mesh size as Th(Y) such that the results of Lemma 4.1 hold.

Lemma 4.6 Let Y be the union of a small number of shape-regular and quasi-uniform simplices
T1, . . . , Tp with diameter diam(Ti) � H := diam(Y). Let Th(Y) be a quasi-uniform simplicial triangu-
lation of Y (not necessarily aligned with {Ti}p

i=1) and let X ⊂ ∂Y be an m-facet of one of the simplices
Ti (note that X is resolved by Th(Y)). Then

‖u − ūX ‖2
L2(Y ) � σ d−m

(
H

h

)
H2|u|2H1(Y ) ∀u ∈ Vh(Y).

The hidden constant depends on the number of simplices p, on the constant cdiscr in Lemma 3.1 and on
the shape-regularity constants of Th(Y) and {Ti}p

i=1.

Proof. It is always possible to refine the simplices T1, . . . , Tp to obtain a quasi-uniform simplicial tri-
angulation T̃h(Y) with mesh size h that coincides with Th(Y) on the boundary ∂Y and that has a shape-
regularity constant that is bounded by the shape-regularity constants of Th(Y) and {Ti}p

i=1. Let Ṽh(Y)
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be the corresponding FE space of continuous, piecewise linear functions. Since T̃h(Y) is aligned with
{Ti}p

i=1 we can apply Lemma 4.5 (with α ≡ 1) to get

‖u − ūX ‖2
L2(Y ) � σ d−m

(
H

h

)
H2|u|2H1(Y ) ∀u ∈ Ṽh(Y). (4.6)

To show that an equivalent statement holds for functions u ∈ Vh(Y) we make use of the Scott–Zhang
operator from Scott & Zhang (1990) (see also Brenner & Scott, 2002). Let Vh(∂Y) be the trace space
of Vh(Y), which is identical to the trace space of Ṽh(Y). There exists an operator Πh : H1(Y) → Ṽh(Y)

such that, ∀ v ∈ H1(Y) with v|∂Y ∈ Vh(∂Y),

(Πhv)|∂Y = v|∂Y , (4.7)

‖v − Πhv‖L2(Y ) � Csch|v|H1(Y ), (4.8)

|Πhv|H1(Y ) � Csc|v|H1(Y ). (4.9)

The operator is constructed by local averages over (d − 1)-dimensional manifolds and the constant Csc

only depends on the shape-regularity constant of T̃h(Y).
Let u ∈ Vh(Y) be arbitrary but fixed. Then, due to (4.7), Πhu

X = ūX and it follows from (4.6) and
(4.8) that

‖u − ūX ‖L2(Y ) � ‖u − Πhu‖L2(Y ) + ‖Πhu − Πhu
X ‖L2(Y )

� h|u|H1(Y ) +
√

σ d−m

(
H

h

)
H |Πhu|H1(Y ).

Clearly, h � H and σ d−m(H/h) � 1, and so the result follows from (4.9). �

4.3 Anisotropic subregions

In this subsection, we treat cases where the partition Y contains anisotropic subregions. We will see that
it is often advantageous not to further subdivide this into a shape-regular partition. We start by showing
an elementary result for the Poincaré constant of a parallelepiped; see also Veeser & Verfürth (2012,
Section 2.1).

Lemma 4.7 Let {�ei}d
i=1 be a (normalized) basis of R

d and let Y be the parallelogram/parallelepiped
{∑d

i=1 βi�ei : βi ∈ (0, Li)}. If X is one of the facets (edges/faces) of Y , then

CP(Y ; X ) � 1,

and the hidden constant is independent of the aspect ratios Li/Lj and of the angles between �ei and �ej for
any 1 � i, j � d.

Proof. The result can easily be shown by transforming Y to the (isotropic) reference cube Q = (0, 1)d

using the linear transformation F(x) = J−1x, where J = (L1�e1| · · · |Ld�ed). �
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Fig. 6. Three model cases of anisotropic domains in two (case (a)) and three dimensions (cases (b) and (c)).

η η

η

HH

H

Fig. 7. Left/middle: ‘annular’ subregions in Example 4.5 in two and three dimensions. The smaller cube sketched inside is cut out
from the larger cube. Right: piecewise constant coefficient distribution increasing gradually towards an edge in three dimensions.

Example 4.4 For any of the regions Y in Fig. 6(a,b,c) and for any (d − 1)-facet X of Y , Lemma 4.7
implies

C(Y , X ) � 1,

independent of the aspect ratio H/η.

Example 4.5 Let Y be one of the two ‘annular’ subregions shown in Fig. 7 (left, middle), and let X
be an edge of length H (left figure) or a face of area H2 (middle figure). Then CP(Y ; X ) � 1. This can
be shown by further subdividing the subregions into a few anisotropic rectangles/cuboids and using
Lemma 2.4 (with D = Y and X ∗ = X ) together with the estimates in Example 4.4. Such estimates can
already be found in Pechstein & Scheichl (2008).

Our next example will be Fig. 7 (right), where a piecewise constant coefficient increases gradually
towards an edge of a cube in three dimensions. To get an optimal bound in this case is surprisingly
difficult. We require a variation of Lemma 2.4.

Lemma 4.8 Let α ∈ L∞
+ (D) be quasi-monotone with respect to a partition Y . Let �∗ be the index of the

region where the maximum is attained and let X ∗ be a (d − 1)-dimensional manifold in ∂Y�∗ . For each
k = 1, . . . , n, let Xk be a (d − 1)-dimensional manifold in ∂Yk and let Pk,�∗ be the quasi-monotone path
from Definition 2.1. Then

C∗
P,α � n

max
k=1

{
diam(Yk)

2

H2
CP(Yk; Xk)

}
+

n∑
k=1

measd(Yk)

measd(Pk,�∗)

diam(Pk,�∗)2

H2
{CP(Pk,�∗ ; Xk) + CP(Pk,�∗ ; X ∗)}.

Proof. Let 1 � k � n be fixed. Then

1
2‖u − ūX ∗‖2

L2(Yk),α � αk‖u − ūXk ‖2
L2(Yk)

+ αk measd(Yk)|ūXk − ūX ∗ |2. (4.10)
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WEIGHTED POINCARÉ INEQUALITIES 673

For the first term on the right-hand side of (4.10) we have

αk‖u − ūXk ‖2
L2(Yk)

� CP(Yk; Xk)
diam(Yk)

2

H2
H2|u|2H1(Yk),α .

The second term can be bounded in the same way as in (2.7), but using two Poincaré inequalities on
the whole of Pk,�∗ (instead of Y�i ) with manifolds Xk and X ∗ (instead of Xi−1 and Xi, respectively). To
conclude the proof we use quasi-monotonicity and sum the two bounds over k = 1, . . . , n. �

Example 4.6 For the scenario in Fig. 7 (right), we have

C∗
P,α �

(
1 + log

(
H

η

))2

.

To see this, we first consider the subdivision {Y�}n
�=1 with n � 1 + log(H/η) depicted in Fig. 7 (right)

and apply Lemma 4.8 with X ∗ one of the long and thin faces of Y�∗ . Clearly, CP(Yk; Xk) � 1 and
CP(Pk,�∗ ; Xk) � 1 because these regions consist of a few cuboids and Xk is one of the faces. Hence,
it remains to investigate CP(Pk,�∗ ; X ∗). First we consider the case k = 1, where P1,�∗ = D.

In the limit case η → 0, the face X ∗ collapses to an edge E of D. Here we can make use of Lemma 3.1
which can straightforwardly be generalized to cubes. Let Th be an auxiliary uniform Cartesian triangu-
lation of D such that the face X ∗ is resolved by just one layer of element faces (h � η); see also X ∗ in
figure 8.

η
E xh

xhf

Let Vh(D) denote the corresponding piecewise linear FE space. As in Lemma 4.6, we make use of a
Scott–Zhang-type quasi-interpolation operator (see Scott & Zhang, 1990; Brenner & Scott, 2002), that
is, there exists an operator Πh : H1(D) → Vh(D) such that, ∀v ∈ H1(D),

‖v − Πhv‖L2(D) � Csch|v|H1(D),

|Πhv|H1(D) � Csc|v|H1(D),

with a uniform constant Csc. The interpolator is constructed by defining the value at each mesh node by
the average over a suitable (d − 1)-dimensional manifold, typically a face associated to the node. The
choice of these manifolds is quite arbitrary. However, for each node xh in Ē, we choose the associated
manifold fxh as displayed in the figure above. Note that

∑
xh∈Ē |fxh | = |X ∗|, and thus,

∫
E
Πhv ds =

∑
xh∈Ē

|fxh |
η

v̄fxh = 1

η

∑
xh∈Ē

∫
fxh

v ds = 1

η

∫
X ∗

v ds ∀v ∈ H1(D).

Since |X ∗| = η|E|, it follows that

Πhv
E = v̄X ∗ ∀v ∈ H1(D).
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674 C. PECHSTEIN AND R. SCHEICHL

We now obtain from the properties of the operator Πh constructed above and from Lemma 3.1 that,
∀ u ∈ H1(D),

‖u − ūX ∗‖2
L2(D) � ‖u − Πhu‖2

L2(D) + ‖Πhu − Πhu
E‖2

L2(D)

� h2|u|2H1(D) + H2(1 + log(H/h))|Πhu|2H1(D)

� H2(1 + log(H/h))|u|2H1(D).

Hence, since h � η, we get that CP(P1,�∗ ; X ∗) � 1 + log(H/η) � n.
Next we investigate Pk,�∗ for k > 1. Consider the linear transformation from the reference cube Q̂ to

Pk,�∗ . This consists simply in multiplying two of the coordinates by 2−kH−1 and the remaining one by
H−1. Then

‖û‖2
L2(Q̂)

= measd(Q̂)

measd(Pk,�∗)
‖u‖2

L2(Pk,�∗ ) and |û|2
H1(Q̂)

� measd(Q̂)

measd(Pk,�∗)
|u|2H1(Pk,�∗ ),

because the spectral norm of the Jacobian is � 1. On Q̂ we can choose a quasi-uniform mesh with mesh
size h � 2−(n+1−k) and apply the arguments from the case k = 1 (with D = Q̂ and H = 1) to obtain

CP(Pk,�∗ ; X ∗) � 1 + log(1/h) � 1 + log(2n+1−k) � n + 1 − k.

Putting all the estimates together and using Lemma 4.8 finally yields

C∗
P,α � 1 +

n∑
k=1

4−kH3H2

4−kH3H2
(1 + (n + 1 − k)) �

n∑
k=1

(2 + n − k) � n2,

where n � 1 + log(H/η). Thus, we have shown that C∗
P,α � (1 + log(H/η))2. Note that the numer-

ical results in Section 5.4 show that this result is not quite sharp. They suggest a behaviour of
O(1 + log(H/η)).

Unfortunately, using Lemma 4.8 for the layered coefficient distribution in Fig. 8 (left, middle) leads
to a suboptimal bound C∗

P,α � 1 + log(H/η) (that grows with the number of layers). The following
alternative theory to Lemmas 2.4 and 4.8 (first given in Pechstein & Scheichl, 2008, Appendix) leads to
optimal bounds even in these cases.

Here, we actually do need to further partition the anisotropic subregions such that {Y�}n
�=1 is simpli-

cial and quasi-uniform. Furthermore, X ∗ has to be the union of a subset {Fj}J
j=1 of the (d − 1)-facets of

the simplices Y� (edges for d = 2 and faces for d = 3). For simplicity we assume that the numbering is
such that Yj is the (unique) simplex whose boundary contains Fj ∀ j = 1, . . . , J .

Lemma 4.9 Let Y := {Y�}n
�=1 be simplicial and quasi-uniform with mesh size η > 0, and let X̄ ∗ =⋃J

j=1 F̄j such that Fj ⊂ Ȳj. For any k ∈ I := {1, . . . , n} and j ∈J := {1, . . . , J}, let Pk,j be a path from
Yk to Yj. Then ∫

Fj

∫
Yk

|u(x) − u(y)|2 dy dsx � sk,jη
d+1|u|2H1(Pk,j)

∀u ∈ H1(Pk,j),

where sk,j is the length of the path Pk,j.
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Proof. Note first that∫
Fj

∫
Yk

|u(x) − u(y)|2 dy dsx �
∫

Fj

∫
Yk

|u(x) − ūFj |2 + |ūFj − u(y)|2 dy dsx

� measd−1(Fj)‖u − ūFj‖2
L2(Yk)

+ measd(Yk)‖u − ūFj‖2
L2(Fj)

. (4.11)

It follows from (4.3) together with the definition of cX ∗
k in (2.2) (with X ∗ = Fj) that

‖u − ūFj‖2
L2(Yk)

� sk,j
measd(Yk)

ηd−2
|u|2H1(Pk,j)

. (4.12)

Also, by transformation to the reference simplex we get that

‖u − ūFj‖2
L2(Fj)

� η|u|2H1(Yj)
. (4.13)

Substituting these last two bounds into (4.11), the final result follows from the fact that by assumption,
measd(Yk) � ηd and measd−1(Fj) � ηd−1. �

Lemma 4.10 Under the assumptions of Lemma 4.9, let α ∈ L∞
+ (D) be quasi-monotone with respect to

Y (in the sense of Definition 3.2) and let each Pk,j be quasi-monotone with respect to α. Then

C∗
P,α � smaxrmaxη

d+1

measd−1(X ∗)H2
,

where smax := max{sk,j : (k, j) ∈ I × J } and

rmax := max
i∈I

|{(k, j) ∈ I × J : Yi ⊂ Pk,j}|,

that is, the maximum number of times any of the simplices Yi is contained in a path.

Proof. Without loss of generality, let u ∈ H1(D) with ūX ∗ = 0 be arbitrary but fixed. We now integrate
the identity u(x)2 − 2u(x)u(y) + u(y)2 = (u(x) − u(y))2 over X ∗ with respect to x, multiply it by α(y),
and finally integrate over D with respect to y:∫

D
α(y) dy‖u‖2

L2(X ∗) − 2
∫

X ∗
u(x) dsx

∫
D

α(y)u(y) dy + measd−1(X
∗)‖u‖2

L2(D),α

=
∫

X ∗

∫
D

α(y)|u(x) − u(y)|2 dy dsx.

The middle term on the left-hand side vanishes since ūX ∗ = 0. Thus,

measd−1(X
∗)‖u‖2

L2(D),α �
∫

X ∗

∫
D

α(y)|u(x) − u(y)|2 dy dsx

=
∑
k∈I

∑
j∈J

αk

∫
Fj

∫
Yk

|u(x) − u(y)|2 dy dsx.
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X*

X*

H

η

X*

η

Fig. 8. Left/middle: layered coefficient distributions in two and three dimensions. Right: partitioning and quasi-monotone paths
for Example 4.7.

Using Lemma 4.9, quasi-monotonicity and the definitions of smax and rmax,

measd−1(X
∗)‖u‖2

L2(D),α �
∑
k∈I

∑
j∈J

sk,jη
d+1|u|2H1(Pk,j),α

� smaxη
d+1
∑
i∈I

|{(k, j) ∈ I × J : Yi ⊂ Pk,j}||u|2H1(Yi),α

� smaxrmaxη
d+1|u|2H1(D),α ,

which concludes the proof. �

Obviously, the statements of Lemmas 4.9 and 4.10 apply also to nonsimplicial partitions (for exam-
ple, quadrilateral or hexahedral) if each region Yi, i ∈ I consists of a few simplices and the resulting
simplicial mesh is quasi-uniform.

Example 4.7 For the two scenarios in Fig. 8 (left, middle), we have

C∗
P,α � 1.

We only give the proof for d = 2. The case d = 3 is analogous.
We subdivide each anisotropic region in Fig. 8 (left) such that the resulting partition Y consists

of (H/η)2 square regions Yk , as shown in Fig. 8 (right). The manifold X ∗ (on the top of ∂D) with
measd−1(X ∗) = H is the union of H/η edges Fj. By using generic L-shaped paths Pk,j from Yk to Fj

as depicted in Fig. 8 (right), for any pair (k, j) ∈ I × J , it is easy to see that (a) each of the paths is
quasi-monotone with respect to the given coefficient distribution in Fig. 8 (left), (b) smax � H/η and
(c) rmax � (H/η)2. Therefore, it follows from Lemma 4.10 that C∗

P,α � 1.

4.4 Subregions with inclusions

As an example of this type we consider the region depicted in Fig. 1(c) with a large number of square
inclusions with coefficient α1, inside a background medium with coefficient α2 > α1. We choose X ∗ to
be a boundary edge of D of length � H .

To bound the weighted Poincaré constant C∗
P,α for this case, we treat all the inclusions as one sub-

region Y1 and the remainder as Y2. We choose the path P12 = D and bound directly the constants cX ∗
1 ,

cX ∗
2 in (2.2). This is still well defined in the case of the disconnected regions Y1 because the path P12 is
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2 1

X*

η

Fig. 9. The checkerboard distribution.

connected. It is easy to see that

cX ∗
1 � CP(D, X ∗) � 1.

To handle the perforated domain Y2 without the inclusions, we shall use Lemma 4.10 to bound cX ∗
2 =

CP(Y2; X ∗). It is straightforward to find a quasi-uniform (square) partition {Ỹi}n
i=1 of Y2 with mesh size

equal to the diameter η of the holes (Fig. 1(c)). We construct a (quasi-monotone) path from each region
Ỹi to one of the faces Fj ⊂ X ∗ by following (essentially) the same construction as in Example 4.7 (with
some small modifications at the start and at the end of the path). It is easy to see that again smax � H/η

and rmax � (H/η)2. Hence,

cX ∗
2 = CP(Y2; X ∗) � 1 and so C∗

P,α � 1.

If there are p distinct values in the inclusions, which are all smaller than α2, following the same
technique we see that

C∗
P,α � p.

On first glance this would suggest that, in the worst case, C∗
P,α � n, but this is not quite true. Using the

concept of macroscopically quasi-monotone coefficients (introduced in Section 2.2), we may combine
subregions with weights of similar size, even if they are not connected. Assume, for example, that the
values of α range from α1 = 10−6 to αn = 1, where Yn is now the perforated (background) region. If we
combine all subregions with values in [10−i, 10−i+1] into one subregion, we have a local variation of 10
in each subregion. Therefore, since there are six such combined subregions,

C∗
P,α � 60

uniformly, even for n → ∞. We note that estimates for C∗
P,α for this example have been shown in Galvis

& Efendiev (2010a, Lemma 4), but they depend on the number n of inclusions and are not explicit in
the geometric parameters.

4.5 The checkerboard distribution

Our last type of example is that of checkerboard-type distributions, as depicted in Fig. 9. We will show
that the discrete Poincaré inequality (4.4) for the coefficient in Fig. 9 holds with

C∗,m
P,α � 1 + log

(η

h

)
.
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In a similar way to Lemma 4.10 we can prove the following bound for C∗,m
P,α in (4.4) in Lemma 4.5.

Lemma 4.11 For d > 1, let Y = {Y�}n
�=1 be a quasi-uniform simplicial partition of D with mesh size

η > 0, and let Th(D) be a quasi-uniform refinement of Y with mesh size η � h > 0. If α ∈ L∞
+ (D) is

type-m quasi-monotone with respect to Y (in the sense of Definition 3.2) and X ∗ is a finite union of
type-m facets Fj of the partition Y (not necessarily connected) such that X̄ ∗ =⋃j∈J Fj, then

C∗,m
P,α � σ d−m

(η

h

) smaxrmaxη
m+2

measm(X ∗) diam(Y)2
,

where smax and rmax are defined as in Lemma 4.10 for type (d − 1).

Proof. Assume first that m > 0. By following the proof of Lemma 4.9, we can show that, for any type-m
quasi-monotone Pk,j from Yk to Yj, such that Fj ⊂ Ȳj, we have

∫
Fj

∫
Yk

|u(x) − u(y)|2 dy dsx � sk,jη
m+2σ d−m

(η

h

)
|u|2H1(Pk,j)

∀u ∈ V h(Pk,j). (4.14)

This result is obtained by using (4.5) instead of (4.3) and the inequality

‖u − ūFj‖2
L2(Fj)

� η2−d+mσ d−m
(η

h

)
|u|2H1(Yj)

∀u ∈ V h(Yj)

instead of (4.13). Using (4.14), we simply follow the proof of Lemma 4.10 and obtain the desired bound
for C∗,m

P,α .
Finally, we treat the case m = 0, which means that X ∗ is the union of isolated points Fj = pj, j ∈J .

Recall the notation ūX ∗ = (1/meas0(X ∗))
∑

j∈J u(pj) introduced in Section 2.1 for the case m = 0, where
meas0(X ∗) =∑j∈J 1. Similarly, we define

∫
X ∗ v ds :=∑j∈J v(pj). With this notation, all the arguments

from above apply to the case m = 0 as well. �

Example 4.8 In the two-dimensional checkerboard example in Fig. 9, we assume that the coefficient
takes two values, α1 and α2 � α1. We choose X ∗ as the union of O(H/η) vertices on the boundary
of D, as shown, and construct type-0 quasi-monotone paths Pk,j from every square Yk ∈Y to every
vertex Fj ∈ X ∗, as shown in the figure. As in Example 4.7 and in Section 4.4, it is easy to see that
these paths satisfy smax � H/η and rmax � (H/η)2, and so, since meas0(X ∗) � H/η, we finally get from
Lemma 4.11 that

C∗,m
P,α � σ 2

(η

h

) H

η

H2

η2

η2

H/ηH2
= 1 + log

(η

h

)
.

5. Numerical results

In this section, we compute for some examples, approximations of the weighted Poincaré constant
CP,α(D) by computing the smallest nonzero eigenvalue of the generalized eigenvalue problem,

Khuh = λMhuh.
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(b)(a) η

η η

Fig. 10. Two classes of dumb-bell coefficient distributions. Dashed lines indicate variable interfaces for changing η.
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Fig. 11. Approximate Poincaré constants for the dumb-bell distributions in Fig. 10(a, b) for different parameters η.

Here Kh is the α-weighted stiffness matrix, Mh is the α-weighted mass matrix and uh is the coeffi-
cient vector of the continuous, piecewise linear FE approximation uh ∈ Vh(D) to the corresponding
eigenfunction in (1.6)–(1.7) on a suitable mesh Th(D). For the eigencomputations we have used the
LOBPCG algorithm (Knyazev, 2001) with a factorization of (Kh + Mh)

−1 as a preconditioner. For the
factorization we have used PARDISO (Schenk & Gärtner, 2004, 2006).

5.1 Dumb-bell-type coefficients

Here we study the two dumb-bell-type coefficient distributions on D = (0, 1)2 shown in Fig. 10. In each
particular case, a suitable shape-regular partition {Y�}n

�=1 can be found such that the following holds.
Case (a). As in Fig. 4(c) and Example 4.1, smax � 1 + log(H/η), and so Lemma 4.1 implies C∗

P �
1 + log(H/η).

Case (b). smax � H/η, and so C∗
P � H/η.

Figure 11 shows the approximate Poincaré constants for α = 105 inside the dumb-bell and α = 1
otherwise. We used a uniform simplicial grid Th(D) with 2 × 512 × 512 elements. As we can see,
our bounds are sharp and for the considered range of η ∈ [ 1

16 , 1
256 ], the Poincaré constants are always

bounded by 10 (even for Case (b)).
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Table 1 Discrete weighted Poincaré constants for the checkerboard distribution for various
choices of η and h

ηmin
1
4

1
8

1
16

1
32

1
64

1
128

1
256

1
512

h = 1
4 0.07344 — — — — — — —

1
8 0.1083 0.05777 — — — — — —
1
16 0.1466 0.0799 0.05339 — — — — —
1
32 0.1852 0.1061 0.07223 0.05189 — — — —
1
64 0.2240 0.1331 0.09518 0.06961 0.05125 — — —
1

128 0.2629 0.1604 0.1191 0.09146 0.06852 0.05095 — —
1

256 0.3017 0.1876 0.1432 0.1143 0.08991 0.06802 0.05080 —
1

512 0.3406 0.2150 0.1674 0.1374 0.1123 0.08921 0.06778 0.05073

5.2 Checkerboard distribution

In Section 4.5, we showed that in the case of the checkerboard distribution in Fig. 9, the discrete
weighted Poincaré constant in (4.4) can be bounded independently of α by

C∗,m
P,α � 1 + log

(η

h

)
.

We can observe this behaviour in Table 1 for the case α1 = 1 and α2 = 105. Keeping η fixed and decreas-
ing h by a constant factor 1

2 each time, we see a constant additive growth in the Poincaré constant. Also,
when η/h is constant, which corresponds to diagonals in the table, the Poincaré constant does not change
significantly.

5.3 Layers

To study the scenario in Fig. 8 (middle), we choose Ω = (0, 1)3. For n layers (of equal width) we set α

to 105((i−1)/(n−1)) in the ith layer, where i = 1, . . . , n. On a mesh with 32 × 32 × 32 elements and varying
n from 2 to 32, the computed weighted Poincaré constant is always 0.0337466, which illustrates that it
is completely independent of the number of layers.

5.4 Coefficients growing towards an edge

Here we study Example 4.6; see also Fig. 7 (right). We choose Ω = (0, 1)3 and let α grow towards the
edge of the cube. Let η denote the smallest width of the region of the largest coefficient, as in Fig. 7
(right). Figure 12 (left) shows the coefficient distribution for η = 1

32 , whereas Fig. 12 (right) shows an
approximation of the second eigenfunction of (1.6)–(1.7) for a mesh of 32 × 32 × 32 elements. The
approximated Poincaré constants for a fixed mesh and varying η are displayed in Table 2. They suggest
a behaviour of CP,α(D) =O(1 + log(H/η)).
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Fig. 12. Coefficient distribution and second eigenfunction for Example 4.6 for η = 1
32 and h = 1

32 .

Table 2 Approximate Poincaré constants for Example 4.6 for
the fixed mesh parameter h = 1

32

η 1
4

1
8

1
16

1
32

CP,α(D) 0.0588303 0.0637642 0.0700526 0.0764003
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Appendix

Lemma A1 Let K be a (nondegenerate) d-dimensional simplex (d � 2) and let F be one of its facets.
Then

CP(K; F) � 1.

If K is a d-dimensional parallelepiped then CP(K; F) � 7
5 .

Proof. Veeser & Verfürth (2009, Section 4, Remark 4.6, Formula (2.3) and Corollary 4.5) have shown
that, ∀ v ∈ H1(K),

1

measd−1(F)
‖v‖2

L2(F) � 1

measd(K)
‖v‖2

L2(K) + 2 diam(K)

νK measd(K)
‖v‖L2(K)|v|H1(K), (A.1)

where νK = d for the simplex and νK = 1 for the parallelepiped. Owing to Payne & Weinberger (1960)
and Bebendorf (2003),

‖u − ūK‖L2(K) � diam(K)

π
|u|H1(K) ∀u ∈ H1(K), (A.2)

because K is convex. With the triangle inequality and Cauchy’s inequality,

‖u − ūF‖L2(K) � ‖u − ūK‖L2(K) +
√

measd(K)|ūK − ūF |

� ‖u − ūK‖L2(K) +
√

measd(K)√
measd−1(F)

‖u − ūK‖L2(F).

Using (A.1) and (A.2) in the estimate above yields

‖u − ūF‖L2(K) � diam(K)

π
|u|H1(K) +

√
‖u − ūK‖2

L2(K)
+ 2 diam(K)

νK
‖u − ūK‖L2(K)|u|H1(K)

� diam(K)

π
|u|H1(K) +

√
diam(K)2

π2
|u|2H1(K)

+ 2 diam(K)

νK

diam(K)

π
|u|2H1(K)

=
(

1

π
+
√

1

π2
+ 2

νKπ

)
︸ ︷︷ ︸

:=C

diam(K)|u|H1(K).

For the simplex, νK = d � 2 and we get C � 0.96609936 < 1. For the parallelepiped, νK = 1 and so

C � 1.17734478 <

√
7
5 . �
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Lemma A2 Let T be a (nondegenerate) d-dimensional simplex and let ρ(T) be the diameter of the
largest inscribed ball in T̄ . Then

measd(T) � diam(T)

(
ρ(T)

2

)d−1

. (A.3)

Proof. The proof is by induction. For d = 1, the inequality is trivial since ρ(T) = diam(T) = meas1(T).
Let d > 1 and assume that (A.3) holds for d − 1. Let Fi, i = 1, . . . , d + 1 be the (d − 1)-dimensional

facets of T . Applying the induction hypothesis to each Fi, we obtain

measd−1(∂T) =
d+1∑
i=1

measd−1(Fi) �
d+1∑
i=1

diam(Fi)

(
ρ(Fi)

2

)d−2

�
(

ρ(T)

2

)d−2 d+1∑
i=1

diam(Fi),

where in the last step we used that ρ(T) � ρ(Fi).
Let E be the longest edge of T such that diam(T) = diam(E). Since each of the facets Fi contains

d vertices, there are exactly two facets Fk1 , Fk2 that do not contain E. The remaining facets contain E
and hence their diameters equal diam(E) = diam(T). The facets Fk1 , Fk2 share (d − 1) vertices, so we
can find edges Ek1 ⊂ Fk1 and Ek1 ⊂ Fk2 that meet at such a vertex, and such that [E, Ek1 , Ek2 ] is a proper
triangle. From this, it is easily seen that diam(Fk1) + diam(Fk2) � diam(E) = diam(T), and so

d+1∑
i=1

diam(Fi) � d diam(T).

We split T into d + 1 simplices Ti, i = 1, . . . , d + 1, defined such that Ti has Fi as its base and the centre
of the largest inscribed ball as its apex. Obviously, the height of Ti is ρ(T)/2 and, hence, measd(Ti) =
(1/d) measd−1(Fi)(ρ(T)/2). Summing over i = 1, . . . , d + 1, we get

measd(T) = 1

d

ρ(T)

2
measd−1(∂T).

Using this identity and the inequalities from above, we obtain

measd(T) � 1

d

ρ(T)

2

(
ρ(T)

2

)d−2

d diam(T) = diam(T)

(
ρ(T)

2

)d−1

,

that is, inequality (A.3) holds for d. �

Proof of Lemma 3.1. First, we need to provide three auxiliary lemmas.

Lemma A3 Let Q be a Lipschitz polytope and V h(Q) be the FE space of continuous, piecewise d-linear
FE functions corresponding to a family of quasi-uniform meshes. Then there exists a positive constant
C independent of h (but depending on Q and d) such that

‖u‖2
L∞(Q) � Cσ d(h−1)‖u‖2

H1(Q) ∀u ∈ V h(Q).
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Proof. For d = 1 the estimate follows from the trace theorem; for d = 2, see, for example, Toselli &
Widlund (2005, Lemma 4.15). For d � 3, the space H1(Q) is embedded in Lq(Q) with q = 2d/(d − 2).
By an inverse inequality, we obtain

‖u‖L∞(Q) � h−d/q‖u‖Lq(Q) � h−(d−2)/2‖u‖H1(Q).

�

Lemma A4 Let Y be the d-dimensional hypercube (0, 1)d , let X be one of its m-facets and let V h(Y) be
the space of continuous, piecewise d-linear FE functions corresponding to a uniform Cartesian mesh.
Then there exists a positive constant C independent of h such that

‖u‖2
L2(X ) � Cσ d−m(h−1)‖u‖2

H1(Y ) ∀u ∈ V h(Y).

Proof. Let Q be the (d − m)-dimensional hypercube such that Y = X × Q. Since the mesh is Cartesian,
its intersection with {x} × Q is again a uniform Cartesian mesh. If we write (x, q) for the coordinates in
X × Q, we can conclude that, for any x ∈ X , u(x, ·) ∈ V h(Q). Thus, with Lemma A3,

‖u‖2
L2(X ) =

∫
X

|u(x, 0)|2 dx �
∫

X
‖u(x, ·)‖2

L∞(Q) dx

� σ d−m(h−1)

∫
X

‖u(x, ·)‖2
H1(Q) dx � σ d−m(h−1)‖u‖2

H1(Y ).

�

Lemma A5 The statement of Lemma A4 holds also for general quasi-uniform meshes.

Proof. For a fixed mesh T h(Y) = {T}, we can always find a uniform Cartesian mesh Qh(Y) = {K} with
comparable mesh size, such that, for each T ∈ T h(Y), there is an element K ∈Qh(Y) such that K ⊂ T .
This restriction guarantees that

‖u‖L2(X ) � ‖IQu‖L2(X ), ‖IQu‖H1(Y ) � ‖u‖H1(Y ) ∀u ∈ V h(Y),

where IQ is the nodal interpolator onto Qh; see Toselli & Widlund (2005, Lemmas 3.8 and B.5). With
these considerations, the result follows simply from Lemma A4 applied to IQu. The additional factors
introduced by IQ only depend on the shape-regularity constant of T h(Y). �

We can now prove Lemma 3.1. Without loss of generality, we may assume that diam(Y) = 1, and
the general case follows from a simple scaling argument. We can find auxiliary domains Yi ⊂ Y , i =
1, . . . , m + 1 such that (a)

⋃m+1
i=1 ∂Yi ∩ X = X and (b) each domain Yi is the image of the m-dimensional

hypercube under a d-linear map whose Jacobian (and its inverse) can be uniformly bounded in terms of
ρ(Y). We may assume that the mesh resolves the domains Yi; otherwise we can find an auxiliary mesh
with this property and interpolate between the two meshes as in the proof above. Applying Lemma A5

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/33/2/652/653341 by guest on 10 April 2024



686 C. PECHSTEIN AND R. SCHEICHL

to each Yi and summing over i = 1, . . . , m + 1, we get

‖u‖L2(X ) � σ d−m(h−1)‖u‖H1(Y ) ∀u ∈ V h(Y).

Finally, the result of Lemma 3.1 can be proved by a classical Bramble–Hilbert argument. By Cauchy’s
inequality, the standard Poincaré inequality and the result above, we have

‖u − ūX ‖2
L2(Y ) � ‖u − ūY ‖2

L2(Y ) + measd(Y)

measm(X )
‖u − ūY ‖2

L2(X )

� [CP(Y) + σ d−m(h−1)CP(Y)]|u|2H1(Y ).

�
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