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In this erratum, with respect to the formulas in the appendix of Xiang et al. (2011), “Clenshaw–Curtis–
Filon-type methods for highly oscillatory Bessel transforms and applications” we add superscripts to
the coefficients a(s)

j in the interpolant and correct the formulas for d(1)
i for i = 0, 1 and a(2)

N−1.
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Appendix

Using the coefficients in polynomial (2.2) and setting

a(0)
j =

⎧⎪⎨
⎪⎩

b̃j

2
, j = 0, N ,

b̃j, j = 1 : N − 1,

we can construct the following Hermite interpolating polynomial pN+2s(x) with s = 1 or s = 2 for N
even:

pN+2(x) =
N+2∑
j=0

a(1)
j Tj(x) and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(1)
j = a(0)

j , j = 0 : N − 3, N ,

a(1)
j = a(0)

j + d(1)
1 , j = N − 2,

a(1)
j = a(0)

j + d(1)
0 , j = N − 1,

a(1)
j = −d(1)

0 , j = N + 1,

a(1)
j = −d(1)

1 , j = N + 2.

Here,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d(1)
0 = 1

8N

N∑
j=1

a(0)
j j2

(
1 − (−1)j

) − 1

8N

(
f ′(1) + f ′(−1)

)
,

d(1)
1 = 1

16N

N∑
j=1

a(0)
j j2

(
1 + (−1)j

) − 1

16N

(
f ′(1) − f ′(−1)

) (see Hasegawa, T. 2004)

pN+4(x) =
N+4∑
j=0

a(2)
j Tj(x) and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(2)
j = a(1)

j , j = 0 : N − 5, N ,

a(2)
j = a(1)

j + 1

4
d(2)

1 , j = N − 4,

a(2)
j = a(1)

j + 1

4
d(2)

0 , j = N − 3,

a(2)
j = a(1)

j − 1

2
d(2)

1 , j = N − 2,

a(2)
j = a(1)

j − 3

4
d(2)

0 , j = N − 1,

a(2)
j = a(1)

j + 3

4
d(2)

0 , j = N + 1,

a(2)
j = a(1)

j + 1

2
d(2)

1 , j = N + 2,

a(2)
j = −1

4
d(2)

0 , j = N + 3,

a(2)
j = −1

4
d(2)

1 , j = N + 4,
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where ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d(2)
0 = 1

96N

N+2∑
j=2

a(1)
j j2(j2 − 1)

(
1 − (−1)j

) − 1

32N

(
f ′′(1) − f ′′(−1)

)
,

d(2)
1 = 1

192N

N+2∑
j=2

a(1)
j j2(j2 − 1)

(
1 + (−1)j

) − 1

64N

(
f ′′(1) + f ′′(−1)

)
.

For the general case, the expression for pN+2s(x) can be deduced by induction on k. Supposing
that

pN+2s(x) =
N+2s∑
j=0

a(s)
j Tj(x),

pN+2(s+1)(x) can be written as

pN+2(s+1)(x) = pN+2s(x) − (x2 − 1)swN+1(x)(d
(s+1)
0 + 2d(s+1)

1 x),

where wN+1(x) = TN+1(x) − TN−1(x), w′
N+1(±1) = 4N and

⎧⎪⎪⎨
⎪⎪⎩

d(s+1)
0 = 1

(s + 1)!2s+3N

(
f (s+1)(−1) − f (s+1)(1) + p(s+1)

N+2s(1) − p(s+1)
N+2s(−1)

)
,

d(s+1)
1 = 1

(s + 1)!2s+4N

(
p(s+1)

N+2s(1) + p(s+1)
N+2s(−1) − f (s+1)(1) − f (s+1)(−1)

)
,

s is odd;

⎧⎪⎪⎨
⎪⎪⎩

d(s+1)
0 = 1

(s + 1)!2s+3N

(
p(s+1)

N+2s(1) + p(s+1)
N+2s(−1) − f (s+1)(1) − f (s+1)(−1)

)
,

d(s+1)
1 = 1

(s + 1)!2s+4N

(
f (s+1)(−1) − f (s+1)(1) + p(s+1)

N+2s(1) − p(s+1)
N+2s(−1)

)
,

s is even.

Applying Mason & Handscomb (2003, (2.39) and (2.41)),

xTj(x) = 1

2

(
Tj+1(x) + T|j−1|(x)

)
, (1 − x2)Tj(x) = −1

4

(
Tj+2(x) − 2Tj(x) + T|j−2|(x)

)
,

we can derive pN+2(s+1)(x) = ∑N+2(s+1)
j=0 a(s+1)

j Tj(x).
When N is odd, similar formulas can be induced by using

w′
N+1(1) = 4N , w′

N+1(−1) = −4N .

For example, in the cases s = 1 and s = 2, the formulas for a(s)
j are still true by using

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d(1)
0 = 1

8N

N∑
j=1

a(0)
j j2

(
1 + (−1)j

) − 1

8N

(
f ′(1) − f ′(−1)

)
,

d(1)
1 = 1

16N

N∑
j=1

a(0)
j j2

(
1 − (−1)j

) − 1

16N

(
f ′(1) + f ′(−1)

)
,
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and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d(2)
0 = 1

96N

N+2∑
j=2

a(1)
j j2(j2 − 1)

(
1 + (−1)j

) − 1

32N

(
f ′′(1) + f ′′(−1)

)
,

d(2)
1 = 1

192N

N+2∑
j=2

a(1)
j j2(j2 − 1)

(
1 − (−1)j

) − 1

64N

(
f ′′(1) − f ′′(−1)

)
,

instead of d(s)
i (i = 0, 1) when N is even.
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